全書共15章,內容如下
■ 第1章 深度學習(Deep Learning)導論
第一章介紹AI的發展趨勢,鑑古知今,瞭解前兩波AI失敗的原因,比較第三波發展的差異性。
■ 第2章 神經網路(Neural Network)原理
第二章介紹深度學習必備的統計/數學基礎,不僅要理解相關知識,也力求能撰寫程式解題。
■ 第3章 TensorFlow 架構與主要功能
第三章介紹TensorFlow基本功能,包括張量(Tensor)運算、自動微分及神經網路模型的組成,並說明梯度下降法求解的過程。
■ 第4章 神經網路實作
第四章開始實作,依照機器學習10項流程,撰寫完整的範例,包括Web、桌面程式。
■ 第5章 TensorFlow 其他常用指令
第五章介紹TensorFlow進階功能,包括各種工具,如TensorBoard、TensorFlow Serving、Callbacks。
■ 第6章 卷積神經網路(Convolutional Neural Network)
■ 第7章 預先訓練的模型(Pre-trained Model)
■ 第8章 物件偵測(Object Detection)
■ 第9章 進階的影像應用
■ 第10章 生成對抗網路 (GAN)
第六~十章介紹圖像/視訊的演算法及各式應用。
■ 第11章 自然語言處理的介紹
■ 第12章 自然語言處理的演算法
■ 第13章 聊天機器人(ChatBot)
■ 第14章 語音辨識
第十一~十四章介紹自然語言處理、語音及各式應用。
■ 第15章 強化學習
第十五章介紹AlphaGo的基礎 -- 『強化學習』演算法。